

 Skip to content

 Toggle navigation

 Sign in

 	

 Product

 	

 Actions

 Automate any workflow

	

 Packages

 Host and manage packages

	

 Security

 Find and fix vulnerabilities

	

 Codespaces

 Instant dev environments

	

 Copilot

 Write better code with AI

	

 Code review

 Manage code changes

	

 Issues

 Plan and track work

	

 Discussions

 Collaborate outside of code

 Explore
 	

 All features

	

 Documentation

	

 GitHub Skills

	

 Blog

	

 Solutions

 For
 	

 Enterprise

	

 Teams

	

 Startups

	

 Education

 By Solution
 	

 CI/CD & Automation

	

 DevOps

	

 DevSecOps

 Resources
 	

 Learning Pathways

	

 White papers, Ebooks, Webinars

	

 Customer Stories

	

 Partners

	

 Open Source

 	

 GitHub Sponsors

 Fund open source developers

 	

 The ReadME Project

 GitHub community articles

 Repositories
 	

 Topics

	

 Trending

	

 Collections

	
 Pricing

 Search or jump to...

 Search code, repositories, users, issues, pull requests...

 Search

 Clear

 Search syntax tips

 Provide feedback

 We read every piece of feedback, and take your input very seriously.

 Include my email address so I can be contacted

 Cancel

 Submit feedback

 Saved searches

 Use saved searches to filter your results more quickly

 Name

 Query

 To see all available qualifiers, see our documentation.

 Cancel

 Create saved search

 Sign in

 Sign up

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.
 You switched accounts on another tab or window. Reload to refresh your session.

Dismiss alert

 {{ message }}

 pure-data

 /

 externals-howto

 Public

 	

Notifications

	

Fork
 21

	

 Star
 168

	

 How-To write externals for Pd

 License

 View license

 168
 stars

 21
 forks

 Branches

 Tags

 Activity

 Star

Notifications

 	

 Code

	

 Issues
 1

	

 Pull requests
 0

	

 Actions

	

 Projects
 0

	

 Security

	

 Insights

Additional navigation options

 	

 Code

	

 Issues

	

 Pull requests

	

 Actions

	

 Projects

	

 Security

	

 Insights

 pure-data/externals-howto

 This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 master

BranchesTags

Go to file

Code

Folders and files
	Name	Name	Last commit message
	Last commit date

	Latest commit

History
209 Commits

	
example1

	
example1

	
	

	
example2

	
example2

	
	

	
example3

	
example3

	
	

	
example4

	
example4

	
	

	
legacy

	
legacy

	
	

	
pd-lib-builder

	
pd-lib-builder

	
	

	
.gitignore

	
.gitignore

	
	

	
LICENSE.txt

	
LICENSE.txt

	
	

	
README.rst

	
README.rst

	
	

	View all files

Repository files navigation
	README
	License

HOWTO write an External for Pure Data

Pure Data (aka Pd) is a graphical real-time computer-music system that follows the tradition of IRCAM's ISPW-Max.

Although plenty of functions are built into Pd, it is sometimes a pain or simply impossible to create a patch with a certain functionality out of the given primitives and combinations of these.

Therefore, Pd can be extended with self made primitives (“objects”) that are written in higher-level programming-languages, like C/C++, Python, lua,...

This document aims to explain how to write such primitives in C, the popular programming language that was used to implement Pd.

Table of Contents

definitions and prerequisites

Pd refers to the graphical real-time computer music environment Pure Data by Miller S. Puckette.

To fully understand this document, it is necessary to be acquainted with Pd and to have a general understanding of programming techniques especially in C.

To write externals yourself, a C compiler that supports the ANSI C standard, like the GNU C compiler (gcc) on Linux systems or Visual C++ on Windows platforms, will be necessary.

classes, instances, objects

Pd is written in the C programming language. Due to its graphical nature, Pd is an object-oriented system. Unfortunately, C does not support the use of classes very well. Thus the resulting source code is not as elegant as C++ code would be, for instance.

In this document, the expression class refers to the realisation of a concept combining data and manipulators on this data.

Concrete instances of a class are called objects.

internals, externals and libraries

To avoid confusion of ideas, the expressions internal, external and library should be explained here.

Internal

An internal is a class that is built into Pd. Plenty of primitives, such as “+”, “pack” or “sig” are internals.

External

An external is a class that is not built into Pd but is loaded at runtime. Once loaded into Pd’s memory, externals cannot be distinguished from internals any more.

Library

A library is a collection of externals that are compiled into a single binary file.

Library files must follow a system-dependent naming convention:

	Operating System	CPU-architecture	filename
	Linux	unspecified (any architecture)	my_lib.pd_linux
	Linux	i386 (Intel/AMD 32bit)	my_lib.l_i386
	Linux	amd64 (Intel/AMD 64bit)	my_lib.l_amd64
	Linux	arm (e.g. RaspberryPi)	my_lib.l_arm
	Linux	arm64	my_lib.l_arm64
	macOS	unspecified (any architecture)	my_lib.pd_darwin
	macOS	fat (multiple archs)	my_lib.d_fat
	macOS	PowerPC	my_lib.d_ppc
	macOS	i386 (Intel 32bit)	my_lib.d_i386
	macOS	amd64 (Intel 64bit)	my_lib.d_amd64
	macOS	arm64 (Apple Silicon)	my_lib.d_arm64
	Windows	unspecified (any architecture)	my_lib.dll
	Windows	i386 (Intel/AMD 32bit)	my_lib.m_i386
	Windows	amd64 (Intel/AMD 64bit)	my_lib.m_amd64

The simplest form of a library includes exactly one external bearing the same name as the library.

Unlike externals, libraries can be imported by Pd with special operations. After a library has been imported, all included externals have been loaded into memory and are available as objects.

Pd supports a few ways to import libraries:

	via the command-line option “-lib my_lib”
	by creating a “declare -lib my_lib” object
	by creating a “my_lib” object

The first method loads a library when Pd is started. This method is preferably used for libraries that contain several externals.

The other method should be used for libraries that contain exactly one external bearing the same name. Pd checks first, whether a class named “my_lib” is already loaded. If this is not the case1, all paths are searched for a file called “my_lib.pd_linux”2. If such file is found, all included externals are loaded into memory by calling a my_lib_setup() function. After loading, a “my_lib” class is (again) looked for as a (newly loaded) external. If so, an instance of this class is created, else the instantiation fails and an error is printed. Anyhow, all external classes declared in the library are loaded by now.

Writing externals

my first external: helloworld

Usually the first attempt at learning a programming language is a “hello world” application.

In our case, we will create an object class that prints the line “Hello world !!” to the standard error every time it is triggered with a “bang” message.

the interface to Pd

To write a Pd external, a well-defined interface is needed. This is provided by the header file “m_pd.h”.

#include "m_pd.h"

a class and its data space

First a new class must be prepared and the data space for this class must be defined.

static t_class *helloworld_class;

typedef struct _helloworld {
 t_object x_obj;
} t_helloworld;

helloworld_class is going to be a pointer to the new class.

Structure t_helloworld (of type struct _helloworld) is the data space of the class.

An absolutely necessary element of the data space is a variable of type t_object, which is used to store internal object properties like the graphical presentation of the object or data about inlets and outlets.

t_object must be the first entry in the structure!

Because a simple “hello world” application needs no variables, the structure is empty apart from the t_object.

method space

In addition to the data space, a class needs a set of manipulators (methods) to manipulate the data with.

If a message is sent to an instance of our class, a method is called. These methods are the interfaces to Pd's message system. On principle, they have no return argument and are therefore of type void.

void helloworld_bang(t_helloworld *x)
{
 post("Hello world !!");
}

This method takes an argument of type t_helloworld, which would enable us to manipulate the data space.

But since we only want to output “Hello world !!” (and, by the way, our data space is quite sparse), we simply ignore the argument.

The post(char *c,...) function sends a string to the standard error. A carriage return is added automatically. Apart from this, the post function works like the C printf() function.

generation of a new class

To generate a new class, information on the data space and the method space of this class must be passed to Pd when a library is loaded.

On loading a new library named “my_lib”, Pd tries to call a “my_lib_setup()” function. This function (or functions called by it) declares the new classes and their properties. It is only called once, when the library is loaded. If the function call fails (e.g., because no function of the specified name is present) no external of the library will be loaded.

void helloworld_setup(void)
{
 helloworld_class = class_new(gensym("helloworld"),
 (t_newmethod)helloworld_new,
 0, sizeof(t_helloworld),
 CLASS_DEFAULT, 0);

 class_addbang(helloworld_class, helloworld_bang);
}

class_new

Function class_new creates a new class and returns a pointer to this prototype.

The first argument is the symbolic name of the class.

The next two arguments define the constructor and destructor of the class.

Whenever a class object is created in a Pd patch, class constructor (t_newmethod)helloworld_new instantiates the object and initialises the data space.

Whenever an object is destroyed (either by closing the containing patch or by deleting the object from the patch) the destructor frees the dynamically reserved memory. The allocated memory for the static data space is automatically reserved and freed.

Therefore we need not provide a destructor in this example, the argument is set to “0”.

To enable Pd to reserve and free enough memory for the static data space, the size of the data structure must be passed as the fourth argument.

The fifth argument has influence on the graphical representation of the class objects. The default value is CLASS_DEFAULT or simply “0”.

The remaining arguments define the arguments of an object and its type.

Up to six numeric and symbolic object arguments can be defined via A_DEFFLOAT and A_DEFSYMBOL. If more arguments are to be passed to the object, or if the order of atom types should be more flexible, A_GIMME can be used for passing an arbitrary list of atoms.

The list of object arguments is terminated by “0”. In this example we have no object arguments at all for the class.

class_addbang

We still need to add a method space to the class.

class_addbang adds a method for a “bang” message to the class that is defined in the first argument. The added method is defined in the second argument.

constructor: instantiation of an object

Each time, an object is created in a Pd patch, the constructor that is defined with the class_new function, generates a new instance of the class.

The constructor must be of type void *.

void *helloworld_new(void)
{
 t_helloworld *x = (t_helloworld *)pd_new(helloworld_class);

 return (void *)x;
}

The arguments of the constructor method depend on the object arguments defined with class_new.

	class_new argument	constructor argument
	A_DEFFLOAT	t_floatarg f
	A_DEFSYMBOL	t_symbol *s
	A_GIMME	t_symbol *s, int argc, t_atom *argv

Because there are no object arguments for our “hello world” class, the constructor has none too.

Function pd_new reserves memory for the data space, initialises the variables that are internal to the object and returns a pointer to the data space.

The type cast to the data space is necessary.

Normally, the constructor would initialise the object variables. However, since we have none, this is not necessary.

The constructor must return a pointer to the instantiated data space. If it returns NULL, Pd think the object did not create.

the code: helloworld

#include "m_pd.h"

static t_class *helloworld_class;

typedef struct _helloworld {
 t_object x_obj;
} t_helloworld;

void helloworld_bang(t_helloworld *x)
{
 post("Hello world !!");
}

void *helloworld_new(void)
{
 t_helloworld *x = (t_helloworld *)pd_new(helloworld_class);

 return (void *)x;
}

void helloworld_setup(void) {
 helloworld_class = class_new(gensym("helloworld"),
 (t_newmethod)helloworld_new,
 0, sizeof(t_helloworld),
 CLASS_DEFAULT, 0);
 class_addbang(helloworld_class, helloworld_bang);
}

a simple external: counter

Now we want to realize a simple counter as an external. A “bang” trigger outputs the counter value on the outlet and afterwards increases the counter value by 1.

This class is similar to the previous one, but the data space is extended by variable “counter” and the result is written as a message to an outlet instead of a string to the standard error.

object variables

Of course, a counter needs a state variable to store the actual counter value.

State variables that belong to class instances belong to the data space.

typedef struct _counter {
 t_object x_obj;
 int i_count;
} t_counter;

Integer variable i_count stores the counter value.

object arguments

It is quite useful for a counter, if an initial value can be defined by the user. Therefore this initial value should be passed to the object at creation time.

void counter_setup(void) {
 counter_class = class_new(gensym("counter"),
 (t_newmethod)counter_new,
 0, sizeof(t_counter),
 CLASS_DEFAULT,
 A_DEFFLOAT, 0);

 class_addbang(counter_class, counter_bang);
}

So we have an additional argument in function class_new: A_DEFFLOAT tells Pd that the object needs one argument of the type t_floatarg. If no argument is passed, this will default to “0”.

constructor

The constructor has some new tasks. On the one hand, a variable value must be initialised, on the other hand, an outlet for the object has to be created.

void *counter_new(t_floatarg f)
{
 t_counter *x = (t_counter *)pd_new(counter_class);

 x->i_count=f;
 outlet_new(&x->x_obj, &s_float);

 return (void *)x;
}

The constructor method has one argument of type t_floatarg as declared in the setup function by class_new. This argument is used to initialise the counter.

A new outlet is created with function outlet_new. The first argument is a pointer to the internals of the object the new outlet is created for.

The second argument is a symbolic description of the outlet type. Since our counter should output numeric values it is of type “float”.

outlet_new returns a pointer to the new outlet and saves this very pointer in the t_object variable x_obj.ob_outlet. If only one outlet is used, the pointer need not additionally be stored in the data space. If more than one outlets are used, the pointers must be stored in the data space, because the t_object variable can only hold one outlet pointer.

the counter method

When triggered, the counter's value should be sent to the outlet and afterwards be incremented by 1.

void counter_bang(t_counter *x)
{
 t_float f=x->i_count;
 x->i_count++;
 outlet_float(x->x_obj.ob_outlet, f);
}

Function outlet_float sends a floating point value (second argument) to the outlet specified by the first argument.

We first store the counter in a floating point buffer. Afterwards the counter is incremented and not before that the buffer variable is sent to the outlet.

What appears to be unnecessary at first glance, makes sense after further inspection: the buffer variable has been declared as a t_float, since outlet_float expects a floating point value and a typecast is inevitable.

If the counter value was sent to the outlet before being incremented, this could result in unwanted (though well defined) behaviour: if the counter outlet directly triggered its own inlet, the counter method would be called although the counter value was not yet incremented. Normally this is not what we want.

The same (correct) result could of course be obtained with a single line, but this would obscure the reentrant problem.

the code: counter

#include "m_pd.h"

static t_class *counter_class;

typedef struct _counter {
 t_object x_obj;
 int i_count;
} t_counter;

void counter_bang(t_counter *x)
{
 t_float f=x->i_count;
 x->i_count++;
 outlet_float(x->x_obj.ob_outlet, f);
}

void *counter_new(t_floatarg f)
{
 t_counter *x = (t_counter *)pd_new(counter_class);

 x->i_count=f;
 outlet_new(&x->x_obj, &s_float);

 return (void *)x;
}

void counter_setup(void) {
 counter_class = class_new(gensym("counter"),
 (t_newmethod)counter_new,
 0, sizeof(t_counter),
 CLASS_DEFAULT,
 A_DEFFLOAT, 0);

 class_addbang(counter_class, counter_bang);
}

a complex external: counter

The simple counter of the previous chapter can easily be extended to more complexity. It might be quite useful to be able to reset the counter to an initial value, to set upper and lower boundaries and to control the step width. Each overrun should send a “bang” message to a second outlet and reset the counter to the initial value.

extended data space

typedef struct _counter {
 t_object x_obj;
 int i_count;
 t_float step;
 int i_down, i_up;
 t_outlet *f_out, *b_out;
} t_counter;

The data space has been extended to hold variables for step width and upper and lower boundaries. Furthermore pointers for two outlets have been added.

extension of the class

The new class objects should have methods for different messages, like “set” and “reset”. Therefore the method space must be extended too.

counter_class = class_new(gensym("counter"),
 (t_newmethod)counter_new,
 0, sizeof(t_counter),
 CLASS_DEFAULT,
 A_GIMME, 0);

Class generator class_new has been extended by the argument A_GIMME. This enables a dynamic number of arguments to be passed at object instantiation.

class_addmethod(counter_class,
 (t_method)counter_reset,
 gensym("reset"), 0);

class_addmethod adds a method for an arbitrary selector to a class.

The first argument is the class the method (second argument) will be added to.

The third argument is the symbolic selector that should be associated with the method.

The remaining “0”-terminated arguments describe the list of atoms that follows the selector.

class_addmethod(counter_class,
 (t_method)counter_set, gensym("set"),
 A_DEFFLOAT, 0);
class_addmethod(counter_class,
 (t_method)counter_bound, gensym("bound"),
 A_DEFFLOAT, A_DEFFLOAT, 0);

A method for “set” followed by a numerical value is added, as well as a method for the selector “bound” followed by two numerical values.

class_sethelpsymbol(counter_class, gensym("help-counter"));

If a Pd object is right-clicked, a help patch describing the object's class can be opened. By default, this patch is located in directory “doc/5.reference/” and is named like the symbolic class name.

An alternative help patch can be defined using function class_sethelpsymbol.

construction of in- and outlets

When creating the object, several arguments should be passed by the user.

void *counter_new(t_symbol *s, int argc, t_atom *argv)

Because of the declaration of arguments in function class_new with A_GIMME, the constructor has the following arguments:

	t_symbol *s	the symbolic name used for object creation
	int argc	the number of arguments passed to the object
	t_atom *argv	a pointer to a list of argc atoms

t_float f1=0, f2=0;

x->step=1;
switch(argc){
default:
case 3:
 x->step=atom_getfloat(argv+2);
case 2:
 f2=atom_getfloat(argv+1);
case 1:
 f1=atom_getfloat(argv);
 break;
case 0:
 break;
}
if (argc<2)f2=f1;
x->i_down = (f1<f2)?f1:f2;
x->i_up = (f1>f2)?f1:f2;

x->i_count=x->i_down;

If three arguments are passed, these should be the lower boundary, the upper boundary and the step width.

If only two arguments are passed, the step width defaults to “1”. If only one argument is passed, this should be the initial value of the counter with step width of “1”.

inlet_new(&x->x_obj, &x->x_obj.ob_pd,
 gensym("list"), gensym("bound"));

Function inlet_new creates a new “active” inlet. “Active” means, that a class method is called each time a message is sent to an “active” inlet.

Due to the software architecture, the first inlet is always “active”.

The first two arguments of the inlet_new function are pointers to the internals of the object and to the graphical presentation of the object.

The symbolic selector that is specified by the third argument is to be substituted by another symbolic selector (fourth argument) for this inlet.

Because of this substitution of selectors, a message on a certain right inlet can be treated as a message with a certain selector on the leftmost inlet.

This means:

	The substituting selector must be declared by class_addmethod in the setup function.
	It is possible to simulate a certain right inlet, by sending a message with this inlet’s selector to the leftmost inlet.
	It is not possible to add methods for more than one selector to a right inlet. Particularly, it is not possible to add a universal method for arbitrary selectors to a right inlet.

floatinlet_new(&x->x_obj, &x->step);

floatinlet_new generates a new “passive” inlet for numerical values. “Passive” inlets allow parts of the data space memory to be written directly from outside. Therefore it is not possible to check for illegal inputs.

The first argument is a pointer to the internal infrastructure of the object. The second argument is the address in the data space memory, where other objects can write too.

“Passive” inlets can be created for pointers, symbolic or numerical (floating point3) values.

x->f_out = outlet_new(&x->x_obj, &s_float);
x->b_out = outlet_new(&x->x_obj, &s_bang);

The pointers returned by outlet_new must be saved in the class data space to be used later by the outlet functions.

The order of the generation of inlets and outlets is important, since it corresponds to the order of inlets and outlets in the graphical representation of the object.

extended method space

The method for the “bang” message must fulfill the more complex tasks.

void counter_bang(t_counter *x)
{
 t_float f=x->i_count;
 int step = x->step;
 x->i_count+=step;
 if (x->i_down-x->i_up) {
 if ((step>0) && (x->i_count > x->i_up)) {
 x->i_count = x->i_down;
 outlet_bang(x->b_out);
 } else if (x->i_count < x->i_down) {
 x->i_count = x->i_up;
 outlet_bang(x->b_out);
 }
 }
 outlet_float(x->f_out, f);
}

Each outlet is identified by the outlet_... functions via the pointer to this outlets.

The remaining methods still need to be implemented:

void counter_reset(t_counter *x)
{
 x->i_count = x->i_down;
}

void counter_set(t_counter *x, t_floatarg f)
{
 x->i_count = f;
}

void counter_bound(t_counter *x, t_floatarg f1, t_floatarg f2)
{
 x->i_down = (f1<f2)?f1:f2;
 x->i_up = (f1>f2)?f1:f2;
}

the code: counter

#include "m_pd.h"

static t_class *counter_class;

typedef struct _counter {
 t_object x_obj;
 int i_count;
 t_float step;
 int i_down, i_up;
 t_outlet *f_out, *b_out;
} t_counter;

void counter_bang(t_counter *x)
{
 t_float f=x->i_count;
 int step = x->step;
 x->i_count+=step;

 if (x->i_down-x->i_up) {
 if ((step>0) && (x->i_count > x->i_up)) {
 x->i_count = x->i_down;
 outlet_bang(x->b_out);
 } else if (x->i_count < x->i_down) {
 x->i_count = x->i_up;
 outlet_bang(x->b_out);
 }
 }

 outlet_float(x->f_out, f);
}

void counter_reset(t_counter *x)
{
 x->i_count = x->i_down;
}

void counter_set(t_counter *x, t_floatarg f)
{
 x->i_count = f;
}

void counter_bound(t_counter *x, t_floatarg f1, t_floatarg f2)
{
 x->i_down = (f1<f2)?f1:f2;
 x->i_up = (f1>f2)?f1:f2;
}

void *counter_new(t_symbol *s, int argc, t_atom *argv)
{
 t_counter *x = (t_counter *)pd_new(counter_class);
 t_float f1=0, f2=0;

 x->step=1;
 switch(argc){
 default:
 case 3:
 x->step=atom_getfloat(argv+2);
 case 2:
 f2=atom_getfloat(argv+1);
 case 1:
 f1=atom_getfloat(argv);
 break;
 case 0:
 break;
 }
 if (argc<2)f2=f1;

 x->i_down = (f1<f2)?f1:f2;
 x->i_up = (f1>f2)?f1:f2;

 x->i_count=x->i_down;

 inlet_new(&x->x_obj, &x->x_obj.ob_pd,
 gensym("list"), gensym("bound"));
 floatinlet_new(&x->x_obj, &x->step);

 x->f_out = outlet_new(&x->x_obj, &s_float);
 x->b_out = outlet_new(&x->x_obj, &s_bang);

 return (void *)x;
}

void counter_setup(void) {
 counter_class = class_new(gensym("counter"),
 (t_newmethod)counter_new,
 0, sizeof(t_counter),
 CLASS_DEFAULT,
 A_GIMME, 0);

 class_addbang (counter_class, counter_bang);
 class_addmethod(counter_class,
 (t_method)counter_reset, gensym("reset"), 0);
 class_addmethod(counter_class,
 (t_method)counter_set, gensym("set"),
 A_DEFFLOAT, 0);
 class_addmethod(counter_class,
 (t_method)counter_bound, gensym("bound"),
 A_DEFFLOAT, A_DEFFLOAT, 0);

 class_sethelpsymbol(counter_class, gensym("help-counter"));
}

a signal-external: xfade~

Signal classes are normal Pd classes, that offer additional methods for signals.

All methods and concepts that can be realized with normal object classes can therefore be realized with signal classes too.

Per agreement, the symbolic names of signal classes end with a tilde .

The class “xfade” shall demonstrate, how signal classes are written.

A signal on the left inlet is crossfaded with a signal on the second inlet. The mixing factor between 0 and 1 is defined via a t_float-message to the third inlet.

variables of a signal class

Since a signal class is only an extended normal class, there are no principal differences between the data spaces.

typedef struct _xfade_tilde {
 t_object x_obj;

 t_float x_pan;
 t_float f;

 t_inlet *x_in2;
 t_inlet *x_in3;

 t_outlet*x_out;

} t_xfade_tilde;

Only one variable x_pan for the mixing factor of the crossfade function is needed.

The other variable, f, is needed whenever a signal inlet is needed too. If no signal but only a float message is present at a signal inlet, this variable is used to automatically convert the float to signal.

Finally, we have members x_in2, x_in3 and x_out, which are needed to store handles to the various extra inlets (resp. outlets) of the object.

signal classes

void xfade_tilde_setup(void) {
 xfade_tilde_class = class_new(gensym("xfade~"),
 (t_newmethod)xfade_tilde_new,
 (t_method)xfade_tilde_free,
 sizeof(t_xfade_tilde),
 CLASS_DEFAULT,
 A_DEFFLOAT, 0);

 class_addmethod(xfade_tilde_class,
 (t_method)xfade_tilde_dsp, gensym("dsp"), A_CANT, 0);
 CLASS_MAINSIGNALIN(xfade_tilde_class, t_xfade_tilde, f);
}

Something has changed with the class_new function: the third argument specifies a “free method” (aka destructor), which is called whenever an instance of the object is to be deleted (just like the “new method” is called whenever an instance is to be created). In the prior examples this was set to 0 (meaning: we don’t care), but in this example we want to clean up some resources when we don’t need them any more.

More interestingly, a method for signal processing must be provided by each signal class.

Whenever Pd’s audio engine is started, a message with the selector “dsp” is sent to each object. Each class that has a method for the “dsp” message is recognised as a signal class. Always mark the arguments following the “dsp” selector as A_CANT, as this will make it impossible to manually send an illegal dsp message to the object, triggering a crash.

Signal classes that want to provide signal inlets must declare this via the CLASS_MAINSIGNALIN macro. This enables signals at the first (default) inlet. If more than one signal inlet is needed, they must be created explicitly in the constructor method.

Inlets that are declared as signal inlets cannot provide methods for t_float messages any longer.

The first argument of the macro is a pointer to the signal class. The second argument is the type of the class’ data space.

The last argument is a dummy variable out of the data space that is needed to replace nonexisting signal at the (first) signal inlet with t_float-messages.

construction of signal inlets and outlets

void *xfade_tilde_new(t_floatarg f)
{
 t_xfade_tilde *x = (t_xfade_tilde *)pd_new(xfade_tilde_class);

 x->x_pan = f;

 x->x_in2 = inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
 x->x_in3 = floatinlet_new (&x->x_obj, &x->x_pan);

 x->x_out = outlet_new(&x->x_obj, &s_signal);

 return (void *)x;
}

Additional signal inlets are added like other inlets, using function inlet_new. The last two arguments are references to the “signal” symbolic selector in the lookup table.

Signal outlets are also created like normal (message) outlets, by setting the outlet selector to “signal”.

The newly created inlets/outlets are “user-allocated” data. Pd will keep track of all the resources it automatically creates (like the default inlet), and will eventually free these resources once they are no longer needed. However, if we request “extra” resources (like the additional inlets/outlets in this example; or - more commonly - memory that is allocated via malloc or similar), we ourselves must make sure that these resources are freed when no longer needed. If we fail to do so, we will invariably cause a dreaded memory leak.

Therefore, we store the “handles” to the newly created inlets/outlets as returned by the ..._new functions for later use.

DSP methods

Whenever Pd’s audio engine is turned on, all signal objects declare their perform routines that are to be added to the DSP tree.

The “dsp” method has two arguments, the pointer to the class data space, and a pointer to an array of signals. The signal array consists of the input signals (from left to right) and then the output signals (from left to right).

void xfade_tilde_dsp(t_xfade_tilde *x, t_signal **sp)
{
 dsp_add(xfade_tilde_perform, 5, x,
 sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}

dsp_add adds a perform function (as declared in the first argument) to the DSP tree.

The second argument is the number of the following pointers to diverse variables. Which pointers to which variables are passed is not limited.

Here, sp[0] is the first input signal, sp[1] represents the second input signal and sp[2] points to the output signal.

Structure t_signal contains a pointer to its signal vector ().s_vec (an array of samples of type t_sample), and the length of this signal vector ().s_n.

Since all the signal vectors in a patch (not including its subpatches) are of the same length, it is sufficient to get the length of one of these vectors.

Since an object doesn't know its perform function's signal vector length until the "dsp" method, this would be the place to allocate temporary buffers to store intermediate dsp computations. See: getbytes.

perform function

The perform function is the DSP heart of each signal class.

A pointer to an array of pointers (really: pointer sized integers) is passed to it. This array contains the pointers that were passed via dsp_add, which must be cast back to their real type.

The perform function must return an address, that is just behind the stored pointers of the function. This means that the return argument equals the argument of the perform function plus the number of pointer variables (as declared as the second argument of dsp_add) plus one.

t_int *xfade_tilde_perform(t_int *w)
{
 t_xfade_tilde *x = (t_xfade_tilde *)(w[1]);
 t_sample *in1 = (t_sample *)(w[2]);
 t_sample *in2 = (t_sample *)(w[3]);
 t_sample *out = (t_sample *)(w[4]);
 int n = (int)(w[5]);

 t_sample pan = (x->x_pan<0)?0.0:(x->x_pan>1)?1.0:x->x_pan;

 while (n--) *out++ = (*in1++)*(1-pan)+(*in2++)*pan;

 return (w+6);
}

Each sample of the signal vectors is read and manipulated in the while loop.

Optimisation of the DSP tree tries to avoid unnecessary copy operations. Therefore it is possible, that in and out signals are located at the same address in the memory. In this case, the programmer must be careful not to write into the out signal before having read the in signal to avoid overwriting data that is not yet saved.

destructor

void xfade_tilde_free(t_xfade_tilde *x)
{
 inlet_free(x->x_in2);
 inlet_free(x->x_in3);
 outlet_free(x->x_out);
}

If our object has some dynamically allocated resources (usually this is dynamically allocated memory), we must free them manually in the “free method” (aka: destructor).

In the example above, we do so by calling inlet_free (resp. outlet_free) on the handles to our additional iolets.

NOTE: we do not really need to free inlets and outlet, as Pd will automatically free them for us (unless we are doing higher-order magic, like displaying one object's iolet as another object's. but let's not get into that for now...)

the code: xfade~

#include "m_pd.h"

static t_class *xfade_tilde_class;

typedef struct _xfade_tilde {
 t_object x_obj;
 t_float x_pan;
 t_float f;

 t_inlet *x_in2;
 t_inlet *x_in3;
 t_outlet*x_out;
} t_xfade_tilde;

t_int *xfade_tilde_perform(t_int *w)
{
 t_xfade_tilde *x = (t_xfade_tilde *)(w[1]);
 t_sample *in1 = (t_sample *)(w[2]);
 t_sample *in2 = (t_sample *)(w[3]);
 t_sample *out = (t_sample *)(w[4]);
 int n = (int)(w[5]);
 t_sample pan = (x->x_pan<0)?0.0:(x->x_pan>1)?1.0:x->x_pan;

 while (n--) *out++ = (*in1++)*(1-pan)+(*in2++)*pan;

 return (w+6);
}

void xfade_tilde_dsp(t_xfade_tilde *x, t_signal **sp)
{
 dsp_add(xfade_tilde_perform, 5, x,
 sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}

void xfade_tilde_free(t_xfade_tilde *x)
{
 inlet_free(x->x_in2);
 inlet_free(x->x_in3);
 outlet_free(x->x_out);
}

void *xfade_tilde_new(t_floatarg f)
{
 t_xfade_tilde *x = (t_xfade_tilde *)pd_new(xfade_tilde_class);

 x->x_pan = f;

 x->x_in2=inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
 x->x_in3=floatinlet_new (&x->x_obj, &x->x_pan);
 x->x_out=outlet_new(&x->x_obj, &s_signal);

 return (void *)x;
}

void xfade_tilde_setup(void) {
 xfade_tilde_class = class_new(gensym("xfade~"),
 (t_newmethod)xfade_tilde_new,
 (t_method)xfade_tilde_free,
 sizeof(t_xfade_tilde),
 CLASS_DEFAULT,
 A_DEFFLOAT, 0);

 class_addmethod(xfade_tilde_class,
 (t_method)xfade_tilde_dsp, gensym("dsp"), A_CANT, 0);
 CLASS_MAINSIGNALIN(xfade_tilde_class, t_xfade_tilde, f);
}

Pd’s message system

Non-audio data is distributed via a message system. Each message consists of a “selector” and a list of atoms.

atoms

There are three kinds of atoms:

	A_FLOAT: a numerical value (floating point)
	A_SYMBOL: a symbolic value (string)
	A_POINTER: a pointer

Numerical values are always floating point values (t_float), even if they could be displayed as integer values.

Each symbol is stored in a lookup table for performance reasons. Function gensym looks up a string in the lookup table and returns the address of the symbol. If the string is not yet to be found in the table, a new symbol is added.

Atoms of type A_POINTER are not very important (for simple externals).

The type of an atom a is stored in structure element a.a_type.

selectors

The selector is a symbol that defines the type of a message. There are five predefined selectors:

	“bang” labels a trigger event. A “bang” message consists only of the selector and contains no lists of atoms.
	“float” labels a numerical value. The list of a “float” message contains one single atom of type A_FLOAT.
	“symbol” labels a symbolic value. The list of a “symbol” message contains one single atom of type A_SYMBOL.
	“pointer” labels a pointer value. The list of a “pointer” message contains one single atom of type A_POINTER.
	“list” labels a list of one or more atoms of arbitrary type.

Since the symbols for these selectors are used quite often, their address in the lookup table can be queried directly, without having to use gensym:

	selector	lookup function call	lookup address
	bang	gensym("bang")	&s_bang
	float	gensym("float")	&s_float
	symbol	gensym("symbol")	&s_symbol
	pointer	gensym("pointer")	&s_pointer
	list	gensym("list")	&s_list
	— (signal)	gensym("signal")	&s_signal

Other selectors can be used as well. The receiving class must provide a method for a specific selector or for “anything”, which is any arbitrary selector.

Messages that have no explicit selector and start with a numerical value, are recognised automatically either as “float” message (only one atom) or as “list” message (several atoms).

For example, messages “12.429” and “float 12.429” are identical. Likewise, the messages “list 1 for you” is identical to “1 for you”.

API reference

Pd types

Since Pd is used on several platforms, many ordinary types of variables, like float, are redefined. To write portable code, it is advisable to use types provided by Pd.

Apart from this there are many predefined types, which should make the life of the programmer simpler.

Generally, Pd types start with t_.

	Pd type	description
	t_atom	atom
	t_float	floating point value
	t_symbol	symbol
	t_gpointer	pointer (to graphical objects)
	t_int	pointer-sized integer value (do not use this for integers)
	t_signal	structure of a signal
	t_sample	audio signal value (floating point)
	t_outlet	outlet of an object
	t_inlet	inlet of an object
	t_object	object internals
	t_class	a Pd class
	t_method	class method
	t_newmethod	pointer to a constructor (new function)

Pd functions

functions: atoms

SETFLOAT

SETFLOAT(atom, f)

This macro sets the type of atom to A_FLOAT and stores numerical value f in this atom.

SETSYMBOL

SETSYMBOL(atom, s)

This macro sets the type of atom to A_SYMBOL and stores symbolic pointer s in this atom.

SETPOINTER

SETPOINTER(atom, pt)

This macro sets the type of atom to A_POINTER and stores pointer pt in this atom.

atom_getfloat

t_float atom_getfloat(t_atom *a);

If the type of atom a is A_FLOAT, the numerical value of this atom, else “0.0”, is returned.

atom_getfloatarg

t_float atom_getfloatarg(int which, int argc, t_atom *argv)

If the type of atom at position which – found in the argv atom list with the length argc – is A_FLOAT, the numerical value of this atom, else “0.0”, is returned.

atom_getint

t_int atom_getint(t_atom *a);

If the type of atom a is A_FLOAT, its numerical value is returned as an integer, else “0” is returned.

atom_getsymbol

t_symbol atom_getsymbol(t_atom *a);

If the type of atom a is A_SYMBOL, a pointer to this symbol is returned, else a null pointer “0” is returned.

atom_gensym

t_symbol *atom_gensym(t_atom *a);

If the type of atom a is A_SYMBOL, a pointer to this symbol is returned.

Atoms of a different type, are “reasonably” converted into a string. This string is inserted into the symbol table (if required). A pointer to this symbol is returned.

atom_string

void atom_string(t_atom *a, char *buf, unsigned int bufsize);

Converts atom a into C string buf. The memory to this char buffer needs to be reserved manually and its length must be declared in bufsize.

gensym

t_symbol *gensym(char *s);

Checks whether C string *s is already present in the symbol table. If no entry exists, it is created. A pointer to the symbol is returned.

functions: classes

class_new

t_class *class_new(t_symbol *name,
 t_newmethod newmethod, t_method freemethod,
 size_t size, int flags,
 t_atomtype arg1, ...);

Generates a class with the symbolic name name. newmethod is the constructor that creates an instance of the class and returns a pointer to this instance.

If memory is reserved dynamically, this memory must be freed by the destructor method freemethod (without any return argument), when the object is destroyed.

size is the static size of the class data space that is returned by sizeof(t_mydata).

flags define the presentation of the graphical object. A (more or less arbitrary) combination of the following values is possible:

	flag	description
	CLASS_DEFAULT	a normal object with one inlet
	CLASS_PD	object (without graphical presentation)
	CLASS_GOBJ	pure graphical object (like arrays, graphs,...)
	CLASS_PATCHABLE	a normal object (with one inlet)
	CLASS_NOINLET	the default inlet is suppressed

Flags whose description is printed in italic are of small importance for writing externals.

The remaining arguments arg1,... define the types of object arguments passed at the creation of a class object. A maximum of six type-checked arguments can be passed to an object. The list of argument types is terminated by “0”.

Possible argument types are:

	A_DEFFLOAT	a numerical value
	A_DEFSYMBOL	a symbolic value
	A_GIMME	a list of atoms of arbitrary length and types

If more than six arguments are to be passed, A_GIMME must be used and a manual type check must be made.

class_addmethod

void class_addmethod(t_class *c, t_method fn, t_symbol *sel,
 t_atomtype arg1, ...);

Adds method fn for selector sel to class c.

The remaining arguments arg1,... define the types of the list of atoms that follow the selector. A maximum of six type-checked arguments can be passed. If more than six arguments are to be passed, A_GIMME must be used and a manual type check must be made.

The list of arguments is terminated by “0”.

Possible types of arguments are:

	A_DEFFLOAT	a numerical value (default to '0')
	A_FLOAT	an obligatory numerical value (no default value)
	A_DEFSYMBOL	a symbolic value (default to '')
	A_SYMBOL	an obligatory symbol value
	A_POINTER	a pointer
	A_GIMME	a list of atoms of arbitrary length and types
	A_CANT	no possible atoms (used for internal messages which would crash Pd when called by the user

class_addbang

void class_addbang(t_class *c, t_method fn);

Adds method fn for “bang”-messages to class c.

The argument of the “bang” method is a pointer to the class data space:

void my_bang_method(t_mydata *x);

class_addfloat

void class_addfloat(t_class *c, t_method fn);

Adds method fn for “float” messages to class c.

The arguments of the “float” method are a pointer to the class data space and a floating point argument:

void my_float_method(t_mydata *x, t_floatarg f);

class_addsymbol

void class_addsymbol(t_class *c, t_method fn);

Adds method fn for “symbol” messages to class c.

The arguments of the “symbol” method are a pointer to the class data space and a pointer to the passed symbol:

void my_symbol_method(t_mydata *x, t_symbol *s);

class_addpointer

void class_addpointer(t_class *c, t_method fn);

Adds method fn for “pointer” messages to class c.

The arguments of the “pointer” method are a pointer to the class data space and a pointer to a pointer:

void my_pointer_method(t_mydata *x, t_gpointer *pt);

class_addlist

void class_addlist(t_class *c, t_method fn);

Adds method fn for “list” messages to class c.

The arguments of the “list” method are – apart from a pointer to the class data space – a pointer to the selector symbol (always &s_list), the number of atoms and a pointer to the list of atoms:

void my_list_method(t_mydata *x,

t_symbol *s, int argc, t_atom *argv);

class_addanything

void class_addanything(t_class *c, t_method fn);

Adds method fn for an arbitrary message to class c.

The arguments of the anything method are – apart from a pointer to the class data space – a pointer to the selector symbol, the number of atoms and a pointer to the list of atoms:

void my_any_method(t_mydata *x,

t_symbol *s, int argc, t_atom *argv);

class_addcreator

void class_addcreator(t_newmethod newmethod, t_symbol *s,
 t_atomtype type1, ...);

Adds creator symbol s, alternative to the symbolic class name, to constructor newmethod. Thus, objects can be created either by their “real” class name or an alias name (e.g. an abbreviation, like the internal “float” resp. “f”).

The “0”-terminated list of types corresponds to that of class_new.

class_sethelpsymbol

void class_sethelpsymbol(t_class *c, t_symbol *s);

If a Pd object is right-clicked, a help patch for the corresponding object class can be opened. By default, this is a patch with the symbolic class name in the directory “doc/5.reference/”.

The name of the help patch for the class pointed to by c is changed to symbol s.

Therefore, several similar classes can share a single help patch.

The path is relative to the default help directory doc/5.reference/.

pd_new

t_pd *pd_new(t_class *cls);

Generates a new instance of class cls and returns a pointer to this instance.

functions: inlets and outlets

All functions for inlets and outlets need a reference to the object internals of the class instance. When instantiating a new object, the necessary data space variable of the t_object type is initialised. This variable must be passed as the owner object to the various inlet and outlet functions.

inlet_new

t_inlet *inlet_new(t_object *owner, t_pd *dest,
 t_symbol *s1, t_symbol *s2);

Generates an additional “active” inlet for the object pointed at by owner. Generally, dest points at “owner.ob_pd”.

Selector s1 at the new inlet is substituted by selector s2.

If a message with selector s1 appears at the new inlet, the class method for selector s2 is called.

This means:

	The substituting selector must be declared by class_addmethod in the setup function.
	It is possible to simulate a certain right inlet, by sending a message with this inlet’s selector to the leftmost inlet.

Using an empty symbol (gensym("")) as selector makes it impossible to address a right inlet via the leftmost one.

	It is not possible to add methods for more than one selector to a right inlet. Particularly, it is not possible to add a universal method for arbitrary selectors to a right inlet.

floatinlet_new

t_inlet *floatinlet_new(t_object *owner, t_float *fp);

Generates a new “passive” inlet for the object pointed at by owner. This inlet enables numerical values to be written directly into the memory location pointed at by fp, without calling a dedicated method.

symbolinlet_new

t_inlet *symbolinlet_new(t_object *owner, t_symbol **sp);

Generates a new “passive” inlet for the object pointed at by owner. This inlet enables symbolic values to be written directly into the memory location pointed at by *sp, without calling a dedicated method.

pointerinlet_new

t_inlet *pointerinlet_new(t_object *owner, t_gpointer *gp);

Generates a new “passive” inlet for the object pointed at by owner. This inlet enables pointer to be written directly into the memory location pointed at by gp, without calling a dedicated method.

outlet_new

t_outlet *outlet_new(t_object *owner, t_symbol *s);

Generates a new outlet for the object pointed at by owner. Symbol s indicates the type of the outlet.

	symbol	symbol address	outlet type
	“bang”	&s_bang	message (bang)
	“float”	&s_float	message (float)
	“symbol”	&s_symbol	message (symbol)
	“pointer”	&s_gpointer	message (pointer)
	“list”	&s_list	message (list)
	—	0	message
	“signal”	&s_signal	signal

There are no real differences between outlets of the various message types. At any rate, it makes code more easily readable, if the use of outlet is shown at creation time. For outlets for any-type messages, a null pointer is used. Signal outlet must be declared with &s_signal.

Variables of type t_object provide pointers to one outlet. Whenever a new outlet is generated, its address is stored in object variable (*owner).ob_outlet.

If more than one message outlet is needed, the outlet pointers returned by outlet_new must be stored manually in the data space so you can later address the given outlet.

outlet_bang

void outlet_bang(t_outlet *x);

Outputs a “bang”-message at the outlet specified by x.

outlet_float

void outlet_float(t_outlet *x, t_float f);

Outputs a “float”-message with numeric value f at the outlet specified by x.

outlet_symbol

void outlet_symbol(t_outlet *x, t_symbol *s);

Outputs a “symbol”-message with symbolic value s at the outlet specified by x.

outlet_pointer

void outlet_pointer(t_outlet *x, t_gpointer *gp);

Outputs a “pointer” message with pointer gp at the outlet specified by x.

outlet_list

void outlet_list(t_outlet *x,
 t_symbol *s, int argc, t_atom *argv);

Outputs a “list” message at the outlet specified by x. The list contains argc atoms. argv points to the first element of the atom list.

Independent of symbol s, selector “list” will precede the list.

To make the code more readable, s should point to the symbol list (either via gensym("list") or via &s_list).

outlet_anything

void outlet_anything(t_outlet *x,
 t_symbol *s, int argc, t_atom *argv);

Outputs a message at the outlet specified by x.

The message selector is specified with s. It is followed by argc atoms. argv points to the first element of the atom list.

functions: DSP

If a class is to provide methods for digital signal processing, a method for selector “dsp” (followed by no atoms) must be added to the class.

Whenever Pd’s audio engine is started, all the objects providing a “dsp” method are identified as instances of signal classes.

DSP method

void my_dsp_method(t_mydata *x, t_signal **sp)

In the “dsp” method, a method for signal processing is added to the DSP tree by function dsp_add.

Apart from the data space x of the object, an array of signals is passed. The signals in the array are arranged from left to right, first the inlets, then the outlets.

In case there are both two in and out signals, this means:

	pointer	to signal
	sp[0]	left in signal
	sp[1]	right in signal
	sp[2]	left out signal
	sp[3]	right out signal

The signal structure contains apart from other things:

	structure element	description
	s_n	length of the signal vector
	s_vec	pointer to the signal vector

The signal vector is an array of samples of type t_sample.

perform function

t_int *my_perform_routine(t_int *w)

A pointer w to an array (of pointer-sized integers) is passed to the perform function that is inserted into the DSP tree by class_add.

In this array, the pointers passed via dsp_add are stored. These pointers must be cast back to their original type.

N.B.: The first pointer is stored at w[1] !!! (w[0] stores the address of the perform-routine itself; while used internally by the DSP-graph, there's typically no use for this value in perform-routine itself.)

The perform function must return a pointer, that points directly behind the memory, where the object’s pointers are stored. This means that the return argument equals function argument w, plus the number of used pointers (as defined in the second argument of dsp_add) plus one.

CLASS_MAINSIGNALIN

CLASS_MAINSIGNALIN(<class_name>, <class_data>, <f>);

Macro CLASS_MAINSIGNALIN declares that the objectclass' first inlet will accept a signal.

The first macro argument is a pointer to the signal class. The second argument is the type of the class data space. The third argument is a (dummy) floating point variable of the data space, that is needed to automatically convert “float” messages into signals if no signal is present at the signal inlet.

No “float” methods can be used for signal inlets created this way.

dsp_add

void dsp_add(t_perfroutine f, int n, ...);

Adds perform function f to the DSP tree. The perform function is called at each DSP cycle.

Second argument n defines the number of the following pointer arguments.

Which pointers to which data are passed is not limited. Generally, pointers to the data space of the object and to the signal vectors are reasonable. The length of the signal vectors should also be passed to manipulate signals effectively.

dsp_addv

void dsp_addv(t_perfroutine f, int n, t_int *vec);

Adds perform function f to the DSP tree. The perform function is called at each DSP cycle.

Second argument n defines the number of arguments passed in third argument vec.

Third argument vec holds the pointers to the data to be passed to perform function f.

This method performs the same operation as dsp_add but is more flexible, because its array can be manipulated at run-time based on attributes of the object. This is how you would create an object with a variable amount of inputs and/or outputs.

sys_getsr

float sys_getsr(void);

Returns the sample rate of the system.

sys_getblksize

int sys_getblksize(void);

Returns the system's top level dsp block size.

Note: this isn't necessarily the same as the length of the signal vector that a signal object is expected to execute on. A switch~ or block~ object might change that. An object's "dsp" method has access to the signal vectors and the s_n entry of any of the t_signal's passed in give the length of the signal vector the dsp perform function will execute on.

functions: memory

getbytes

void *getbytes(size_t nbytes);

Reserves nbytes bytes and returns a pointer to the allocated memory.

copybytes

void *copybytes(void *src, size_t nbytes);

Copies nbytes bytes from *src into a newly allocated memory block. The address of this memory block is returned.

freebytes

void freebytes(void *x, size_t nbytes);

Frees nbytes bytes at address *x.

functions: output

post

void post(const char *fmt, ...);

Writes a C string to the Pd console.

verbose

void verbose(int level, const char *fmt, ...);

Writes a C-string as a verbose message to the Pd-console. If level==0, the message is only printed if Pd was started in verbose mode (-v startup flag). If level==1, the message is only printed if Pd was started in more verbose mode (-v -v startup flags), and so on.

pd_error

void pd_error(void object*, const char *fmt, ...);

Writes a C string as an error message to the Pd console. The error message is associated with the object that emitted it, so you can Control -click the error message to highlight the object (or find it via the Pd menu Find->Find last error)

The object must point to your object instance (or be NULL).

logpost

void logpost(void object*, const int level, const char *fmt, ...);

Writes a C-string as an message to the Pd-console at a given verbosity. The message is associated with the object that emitted it, so you can Control -Click the error message to highlight the object.

The object must point to your object instance (or be NULL).

The verbosity level can have the following values:

	level	severity
	0	fatal
	1	error
	2	normal
	3	verbose
	4	more verbose

error

Previous versions of Pd had an error function to emit errors, but this has been removed as it clashed with the function of the same name in many libc implementations.

Use pd_error() instead (possibly with a NULL object)

	If a class “my_lib” is already existent, an object “my_lib” will be instantiated and the procedure is done. Thus, no library has been loaded. Therefore no library that is named like an already used class name like, say, “abs”, can be loaded.↩

	or other system-dependent filename extensions (s.a.)↩

	That’s why the step width of the classdata space is declared as t_float.↩

 About

 How-To write externals for Pd

 Resources

 Readme

 License

 View license

 Activity

 Custom properties

 Stars

 168
 stars

 Watchers

 16
 watching

 Forks

 21
 forks

 Report repository

 Releases

 No releases published

 Packages
 0

 No packages published

 Contributors
 9

 	

	

	

	

	

	

	

	

	

 Languages

	

 TeX
 65.0%

	

 Makefile
 26.3%

	

 C
 8.7%

 Footer

 © 2024 GitHub, Inc.

 Footer navigation

 	
 Terms

	
 Privacy

	
 Security

	
 Status

	
 Docs

	
 Contact

	

 Manage cookies

	

 Do not share my personal information

 You can’t perform that action at this time.

